Detection of Plasmid-mediated Ampc β-lactamases Among E.coli and Klebsiella pneumoniae by Multiplex PCR”

Authors

  • Anuradha Basavaraju
  • Praveena Muttaraju Mamata Medical College , affiliated to NTR university of health sciences

Keywords:

AmpC beta-lactamase, ESBL, E.coli, Klebsiella, PCR

Abstract

Background: Gram negative bacteria are acquiring drug resistance due to Extended spectrum beta lactamase (ESBL) production and also Plasmid mediated AmpC beta-lactamases (PMABLs). This is one of the major causes of multi-drug resistance among E.coli and Klebsiellainclinical practice. Detection of PMABL genes by molecular methods such as multiplex PCR gives accurate results in specific identification.

Methods: ESBL producing strains of 40 E.coli and Klebsiella were tested phenotypically for Plasmid mediated AmpC beta-lactamase production by using cefoxitin disk. The genes coding for PMABLs production was tested by multiplex PCR. Antibiotic susceptibility pattern of the isolates was also tested.

Results:  22(55%) of E.coli and 17(42.5%) of Klebsiella pneumoniae were phenotypically producing AmpC beta-lactamases. On genotypic testing 15(37.5%) E.coli and 11(28%) Klebsiella pneumoniae were positive for plasmid mediated AmpC beta-lactamases. Plasmid encoded AmpC genes in E.coli are CIT/EBC, CIT, and EBC. In Klebsiella pneumoniae the genes were CIT/DHA, CIT, and DHA. All the isolates showed 100% resistance to Cefoxitin and amox/clav and also higher degrees of resistance to cefotaxime, ceftazidime, cefepime, aztreonam and piperacillin/ tazobactam.

Conclusion: ESBL producing strains of E.coli and Klebsiella are developing drug resistance due to the production of PMABLs. Detection of genes coding for PMABL production are best tested by multiplex PCR which gives accurate results than phenotypic detection methods.

Author Biography

Praveena Muttaraju, Mamata Medical College , affiliated to NTR university of health sciences

Department of Microbiology, Mamata Medical College

References

1. Dahyot S, Mammeri H. Hydrolysis Spectrum Extension of CMY-2-Like β-Lactamases Resulting from Structural Alteration in the Y-X-N Loop. Antimicrob Agents and Chemother. 2011; 56(3):1151-1156.
2. Gupta V, Kumarasamy K, Gulati N, Garg R, Krishnan P, Chander J. AmpC β-lactamases in nosocomial isolates of Klebsiella pneumonia from India. Indian J of Med Res. 2012; 136(2):237-241.
3. Haldorsen B, Aasnaes B, Dahl KH, Hanssen AM, Simonsen GS, Walsh TR, et al. The AmpC phenotype in Norwegian clinical isolates of Escherichia coli is associated with an acquired ISEcp-1-like AmpC element of hyper production of the endogenous AmpC. J of AntimicrobChemother. 2008; 62:694-702.
4. De la Cruz F, Davies J. Horizontal gene transfer and the origin of species: lessons from bacteria. Trends in Microbiol. 2000; 8(3):128-133.
5. Lee W, Jung B, Hong HG, Song W, Jeong SH, Lee K, et al. Comparison of 3 Phenotypic-detection Methods for Identifying Plasmid-mediated AmpC β-lactamase-producing Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis Strains. Korean J Lab Med. 2009; 29:448-454.
6. Manoharan A, Sugumar M, Kumar A, Jose H, Mathai D. ICMR-ESBL Study Group. Phenotypic & molecular characterization of AmpC β-lactamases among Escherichia coli, Klebsiella spp. &Enterobacter spp. From five Indian Medical Centres. Indian J Med Res. 2012; 135(3):359-364.
7. Perez-Perez FJ, Hanson ND. Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. J ClinMicrobiol. 2002; 40:2153-62.
8. Thomson KS, Smith Moland E. The new beta lactamases of Gram negative bacteria at the dawn of the new millennium. Microbes Infect. 2000; 2:1225-1235.
9. Bush K. New beta lactamases in Gram negative bacteria: diversity and impact on the selection of antimicrobial therapy. Clin Infect Dis. 2001; 32:1085-1089.
10. Bauernfeind A, Chong Y, Lee K. Plasmid-encoded AmpC beta lactamases: how far have we gone 10 years after the discovery? Bonsai Med J. 1998; 39:520-525.
11. Mohamudha PR, Harish BN, Parija SC. Molecular description of plasmid-mediated AmpC β-lactamases among nosocomial isolates of Escherichia coli & Klebsiella pneumonia from six different hospitals in India. Indian J Med Res. 2012; 135(1)114-119.

12. Kenneth HR, Bradley T, Hilary S, Christine H, Judith AJ, Andrea Z. Clinical Laboratory Detection of AmpC β-Lactamase, Does it affect patient Outcome? Am J ClinPathol. 2011; 135:572-576.
13. Black JA, Moland ES, Thomson KS. AmpC disk test for detection of plasmid-mediated AmpC beta-lactamases in Enterobacteriaceae lacking chromosomal AmpC beta-lactamases. J ClinMicrobiol. 2005; 43:3110-3113.
14. Yong D, Park R, Yum JH, et al. Further modification of the Hodge test to screen AmpC beta-lactamase (CMY-1)-producing strains of Escherichia coli and Klebsiella pneumonia. J Microbiol Methods. 2009; 34:38-43.
15. Coudron PE. Inhibitor-based methods for detection of plasmid- mediated AmpC β-lactamase in Klebsiella spp. Escherichia coli and Proteus mirabilis. J ClinMicrobiol. 2005; 43:4163-4167.
16. Hanson ND, Thomson KS, Moland ES, Sanders CC, Berthold G, Penn RG Molecular characterization of a multiply resistant Klebsiella pneumonia encoding ESBLs and a plasmid-mediated AmpC. J AntimicrobChemother. 1999; 44:377-380.
17. Alden R, Lee S, Wang WALL, Bennett JV and Eickhoff TC Ann. Intern. Med.1971; 74:657-664.
18. Jacoby AG Clinical Microbiological Reviews. Jan, 2009; 161-182.
19. Baurenfeind A, Schneider I, Jungwirth R, Sahly H, Ullmann U. Anovel type of AmpC β-lactamase, ACC-1, produced by a Klebsiella pneumonia strain causing nosocomial pneumonia. Antimicrob Agents Chemother 1999; 43:1924-31.

20. Singhal S, Mathur T, Khan S, Upadhyay DJ, Chug S, Gaind R, et al. Evaluation of methods for AmpC β-lactamase in Gram negative clinical isolates from tertiary care hospitals. Indian Med Microbiol 2005;23:120-4
21. Arora S, Bal M, AmpC β-lactamase producing bacterial isolates from Kolkata hospital. Indian J Med Res 2005; 122:224-33.
22. Taneja N, Rao P, Arora J, Dogra A. Occurrence of ESBL and AmpC β-lactamases and susceptibility to newer antimicrobial agents in complicated UTI. Indian J Med Res 2008; 127:85-8.
23. Subha A, Renuka Devi V, Ananthan S, AmpC β-lactamase producing multidrug resistant strains of Klebsiella spp. and Escherichia coli isolated from children under five in Chennai. Indian J Med Res 2003; 117:13-18.
24. Ratna AK, Menon I, Kapur I, Kulkarni R. Occurrence and detection of AmpCβ-lactamases t a referral hospital in Karnataka. Indian J Med Res 2003; 118:29-32.
25. Hemalatha V, Padma M, Sekar U, Vinodh TM, Arunkumar AS. Detection of AmpC β-lactamases production in Escherichia Coli & Klebsiella by an inhibitor based method. Indian J Med Res 2007; 126:220-3.
26. Alvarez M, Tran JH, Chow N, Jacoby GA Epidemiology of conjugative plasmid-mediated AmpC β-lactamases in the United states. Antimicrobial Agents Chemother2004; 48:533-7.
27. Sasirekha B, Shiva Kumar S Occurrence of plasmid-mediated AmpC β-lactamases among Escherichia coli and Klebsiella pneumonia clinical isolates in a tertiary care hospital in Bangalore. Indian J Microbiol 2012; 52(2):174-179.
28. Black JA, Thomson KS, Buynak JD, Pitout JDD Evaluation of β-lactamase inhibitors indisk tests for detection of plasmid-mediated AmpC β-lactamases in well characterized clinical strains of Klebsiella spp. J ClinMicrobiol 2005;43:4168-71.
29. Hernandez-Alles S, Benedi VJ, Martinez-Martinez L, Pascual A, Aguilar A, Tomas JM, et al. Development of resistance during antimicrobial therapy caused by insertion sequence interruption of Porin genes. Antimicrob Agents Chemother 1999; 43:937-9.
30. Haeng SJ, Kwon IL, Jeong HS, Hee JJ, Si Hyun K, Ja Young L, Seung HO, Hye Ran K, Chulhun LC, Wean-Gyu K, and Jeong NL Prevalence of plasmid mediated quinolone resistance and it is association with extended spectrum β-lactamase and AmpC β-lactamase in Enterobacteriaceae. KJLM 2011; 31(4):257.
31. Neil wood F, Suganya R, Fagan EJ, Hill LRR, Hopkins LK, Kaufmann ME, James K, Marie F Wide geographic spread of diverse acquired AmpC β-lactamases among Escherichia coli and Klebsiella spp. in the UK and Ireland. Journal of Antimicrobial Chemotherapy 2001; 59:102-105.
32. Shahid M, Sobia F, Anuradha S, and Haris MK Journal of Clinical Microbiology 2012; 1779-1782.
33. Shanti M, Sekae U, Arunagiri K, Sekar B Detection of AmpC genes encoding for β-lactamases in Escherichia coli and Klebsiella pneumonia Indian J Med Microbiol 2012;30:290-5.
34. Thomson KS, Controversies about extended spectrum and AmpC β-lactamases. Emerging Infectious Diseases 7,333-6.
35. Renuka R, Ravindranath G, Ajay kumar O, Kelmani CR Prevalence of MDR-ESBL producing Klebsiella pneumonia isolated from clinical samples J Microbiol Biotech Res. 2013;3(1):32-39.

Downloads

Additional Files

Published

24-08-2016

How to Cite

1.
Basavaraju A, Muttaraju P. Detection of Plasmid-mediated Ampc β-lactamases Among E.coli and Klebsiella pneumoniae by Multiplex PCR”. Ann of Pathol and Lab Med [Internet]. 2016 Aug. 24 [cited 2025 Jan. 15];3(3):A230-236. Available from: https://pacificejournals.com/journal/index.php/apalm/article/view/apalm726

Issue

Section

Original Article